Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Med ; 36(181): 332-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409838

RESUMO

BACKGROUND: Glioma is a tumor originating from glial cells and is the most common primary brain tumor. At present, the main treatment methods for glioma include surgical resection and radiotherapy and chemotherapy, but the treatment effect is not very ideal. Genistin (GS) inhibits breast cancer cell growth while promoting apoptosis, but its effect and detailed molecular mechanism on glioma are yet to be defined. In addition, forkhead box C1 (FOXC1) has been found to be involved in the growth, invasion, and angiogenesis processes of glioma cells. METHODS: Human glioma cells in the Control, GS-6.25, GS-12.5, and GS25 (GS) groups were treated with 0, 6.25, 12.5, and 25 µM of Genistin, respectively, for 72 hours, and cells in the GS + NC (negative control) and GS + FOXC1 groups were transfected with negative control or forkhead box C1 (FOXC1) overexpression plasmids, respectively, prior to Genistin (25 µM) treatment for 72 hours. Next, the viability, proliferation, apoptosis, and angiogenesis of treated glioma cells were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'deoxyuridine (EdU) proliferation, flow cytometry, and tube formation assays. Meanwhile, the half-maximal inhibitory concentration (IC50) of Genistin in the treated glioma cells was calculated. Afterwards, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot quantified the levels of FOXC1, Wnt1, Wnt3a, glycogen synthase kinase-3ß (GSK3ß), and phosphorylated GSK3ß (p-GSK3ß). RESULTS: Genistin inhibited viability, proliferation, and angiogenesis while promoting the apoptosis of glioma cells (p < 0.05, p < 0.001). Also, Genistin decreased the levels of FOXC1, Wnt1, and Wnt3a while increasing p-GSK3ß levels in glioma cells (p < 0.05, p < 0.01, p < 0.001). FOXC1 was up-regulated in glioma cells and tissues, and overexpressed FOXC1 overturned the effects of Genistin on the abovementioned factors in glioma cells (p < 0.05, p < 0.001). CONCLUSIONS: Genistin inhibits viability, proliferation, and angiogenesis while accelerating glioma cell apoptosis by modulating the FOXC1-mediated Wnt signaling pathway.


Assuntos
Glioma , Isoflavonas , Via de Sinalização Wnt , Humanos , Angiogênese , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
Front Genet ; 14: 1094838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845398

RESUMO

Gastric cancer (GC) is highly heterogeneous and GC patients have low overall survival rates. It is also challenging to predict the prognosis of GC patients. This is partly because little is known about the prognosis-related metabolic pathways in this disease. Hence, our objective was to identify GC subtypes and genes related to prognosis, based on changes in the activity of core metabolic pathways in GC tumor samples. Differences in the activity of metabolic pathways in GC patients were analyzed using Gene Set Variation Analysis (GSVA), leading to the identification of three clinical subtypes by non-negative matrix factorization (NMF). Based on our analysis, subtype 1 showed the best prognosis while subtype 3 exhibited the worst prognosis. Interestingly, we observed marked differences in gene expression between the three subtypes, through which we identified a new evolutionary driver gene, CNBD1. Furthermore, we used 11 metabolism-associated genes identified by LASSO and random forest algorithms to construct a prognostic model and verified our results using qRT-PCR (five matched clinical tissues of GC patients). This model was found to be both effective and robust in the GSE84437 and GSE26253 cohorts, and the results from multivariate Cox regression analyses confirmed that the 11-gene signature was an independent prognostic predictor (p < 0.0001, HR = 2.8, 95% CI 2.1-3.7). The signature was found to be relevant to the infiltration of tumor-associated immune cells. In conclusion, our work identified significant GC prognosis-related metabolic pathways in different GC subtypes and provided new insights into GC-subtype prognostic assessment.

3.
Cancer Manag Res ; 11: 8407-8418, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571996

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors in the world. It is the fourth most common cancer and has the second highest mortality rate globally. Metastasis is an important feature of gastric cancer and is the most common cause of death. Exploring the mechanism underlying the metastasis of gastric cancer and searching for new drug targets has become the focus of several studies. Traditional Chinese medicine may show promise for treatment of gastric cancer. In this review, we report the recent progress in research on the anti-metastasis activity of Chinese medicine, to facilitate clinical development of treatments for gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...